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Abstract 

The progress of phase refinement by non-crystal- 
lographic symmetry averaging is often described by the 
behavior of a crystallographic R factor expressing 
agreement between the observed structure factors and 
structure factors calculated from an averaged electron 
density map. An upper limit for this R factor is 
evaluated for the case of incorrectly positioned non- 
crystallographic symmetry operators. Depending on 
the degree of non-crystallographic symmetry, the upper 
limit on R varies from 0.29 to 0-43, for acentric 
structures. Incorrect structures with the correct non- 
crystallographic symmetry are anticipated to converge 
to even lower values of R. In all cases, R values 
calculated for incorrect structures will be significantly 
lower than the value of 0.586 characteristic of wrong 
structures lacking non-crystallographic symmetry 
[Wilson (1950). Acta Cryst. 3, 397-3991. 

Introduction 

When multiple copies of identical molecules are located 
in the asymmetric unit of a crystal, constraints exist 
between the phases of the associated structure factors 
(Rossmann & Blow, 1963). These constraints arise 
from redundancies in the X-ray intensity data 
generated by the non-crystallographic symmetry 
relationships between molecules. The real-space formu- 
lation of these relationships (Bricogne, 1974) forms the 
basis of a powerful technique for phase refinement, 
which has been utilized for macromolecular structure 
determinations in two principal fashions: (a) to refine 
experimental (multiple isomorphous replacement) 
phases (Buehner, Ford, Moras, Olsen & Rossmann, 
1974; Bloomer, Champness, Bricogne, Staden & Klug, 
1978; Harrison, Olson, Schutt, Winkler & Bricogne, 
1978; Rees & Lipscomb, 1980; Abad-Zapatero et al., 
1981; Wilson, Skehel & Wiley, 1981) and (b) to refine 
trial phases calculated from some initial structural 
model (Rayment, Baker, Caspar & Muratami, 1982; 
Robinson & Harrison, 1982). 

Structure determinations using either approach are 
susceptible to systematic errors resulting from incorrect 
identification of the non-crystallographic symmetry 
operations. The possibilities for such errors are not 
negligible, since non-crystallographic symmetry 
operations are often obtained from rotation and 
translation functions and from molecular symmetry 
and packing considerations - techniques which may 
suffer from significant ambiguities in interpretation. In 
addition, systematic errors may be introduced into 
approach (b) if the initial structural model is poorly 
correlated with the true structure. The correctness of 
the refined structure may be most easily ascertained for 
structure determinations at high resolution by the 
ability to follow the path of the macromolecular chain. 
At low resolution, however, criteria for correctness of a 
refined structure are much less definitive (Eisenberg, 
1982). The crystallographic R factor describing the 
agreement between observed structure factors and 
structure factors calculated from the final symmetrized 
electron density map is often presented as an indi- 
cation of the correctness of the final structure. In this 
paper, we evaluate an upper limit to this R factor for 
the 'worst' case of a structural model having incorrect 
non-crystallographic symmetry. It is shown that the 
largest likely value for R in this incorrect case is 
significantly lower than the value of 0.586 charac- 
teristic of random non-centrosymmetric structures 
lacking non-crystallographic symmetry. 

Theoretical aspects 

The transformations relating the coordinates of N 
identical copies of a molecule to one particular copy 
may be expressed by 

x n=C, ,x  l+d,,, 1 <_n<N, (1) 

where C, and d. are the rotation matrix and trans- 
lation vector describing the nth transformation. The 
following discussion will be restricted to the particular 
case in which a structure exhibits 'proper' non-crystal- 
lographic symmetry, in which the structure is invariant 
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under a group of local rotations about a point. If this 
point is selected as the origin, d, = 0. 

The electron density, p, at points x I and x n related by 
(1) must be equal: 

p(x,,)=p(xl). (2) 

Averaging an electron density map with the non- 
crystallographic symmetry generates a new map with 
density pc(x i), where 

1 
pc(x,) = -~ ~ P(Xn) 

" (3) 1 
= N ~ p(C"x')" 

n 

The Fourier transform of this expression yields 

1 
Fc(h) = -N Z F°(hC")' (4) 

n 

where Fo(h) and Fe(h ) are the observed and calculated 
structure factors, respectively. 

As expressed, this averaging operation is strictly 
valid only for the continuous molecular transform 
corresponding to a non-repeating system. In a crystal- 
line sample, this molecular transform is sampled only at 
grid points of the reciprocal lattice. Since the C n do not 
correspond to crystallographic symmetry operators, 
hC n will not in general coincide with a reciprocal-lattice 
point, and so will not be observed. In principle, 
however, these values could be obtained from the 
observed structure factors by interpolation (Sayre, 
1952). 

Since the matrices C,, form a closed point group, we 
may also write 

1 
Fe(hCi) = -~ ~ Fo(hCiCn), 1 G i G N, 

n 

1 
Fo(hC,) (5) 

/1 

= G ( h ) .  

This equivalence requires that both the phases and the 
amplitudes of the calculated structure factors for the N 
reflections hC,, be identical. If these calculated phases 
are applied to the IFo(h)l in an iterative refinement 
process, we will have, at convergence, 

,Fc(h)le,,~ =-N-l{ } IFo(hCn)l e'% (6) 
n 

Consequently, the final calculated amplitude for a 
structure factor will be equal to the mean value of the 
amplitudes of the non-crystallographically related 
reflections. The ability to separate the phase and 
amplitude components in this summation is due entirely 
to the non-crystallographic symmetry relationships. 

This property is an extension of the case where the C n 
are crystallographic symmetry operations, so that (6) 
follows immediately from the required identity of all the 
IFo(h)l. 

If the rotation matrices C, are incorrect, then the 
structure factors for the reflections hC,, related by the 
non-crystallographic symmetry will be uncorreleated. 
Evaluation of the crystallographic R factor 

Y llro(h)l--frc(h)l I 
R = (7) 

Y IFo(h)l 

as a function of N is of considerable interest in this 
case, since R is often quoted as an important indicator 
of the correctness of a structural model (Rayment, 
1983). Misinterpretation of the non-crystallographic 
symmetry transformations is a serious fundamental 
error in a structure determination, so that the con- 
vergence behavior for this example should provide a 
'worst-case' estimate for the largest likely value of R for 
any given N. 

Values for IFc(h)l, when N = 2, may be obtained 
from (6): 

IFc(h)l = ½[IFo(h)l + IFo(hC2)l 1. (8) 

Substitution of (8) into (7) yields 

2 Y IFo(h)l 

Since the model is assumed to be random, IFo(h)l and 
IFo(hC2)l are independent. The bracketed expression in 
(9) was shown by Wilson (1950) to equal 0.586 for an 
acentric structure, so that R = 0.293 when N = 2. 

For values of N greater than 2, numerical estimates 
of R were obtained by the following calculation. N 
independent data sets, corresponding to the IFo(hC,,)l, 
1 < n < N, and obeying acentric Wilson statistics, were 
obtained using a random number generator. For these 
calculations, 5000 reflections (different h values) were 
included in each data set. The results obtained below 
were essentially unaffected by halving or doubling this 
number. To obtain I Fc(h)l, the average of the N 
different IFo(hC,)t for a given h was calculated. This is 
equivalent to the averaging operation expressed in (4). 
R was then evaluated from (7) by taking data set 1 as 
the IFo(h)l. The resulting dependence of R on N 
appears in Table 1. The limiting value for R may also 
be evaluated by noting that as N ~ oo IFc(h)l 
(IFo(h)l). By standard techniques (Wilson, 1950) and 
numerical methods (Stroud & Secrest, 1966) to 
evaluate (7), a value of 0.43 for R is calculated in the 
limit of N -~ oo. Consequently, the value of R at 
convergence for structures with incorrect non-crystal- 
lographic symmetry is much lower than the value R = 
0.586 characteristic of a completely incorrect structure 
without non-crystallographic symmetry. 
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Table 1. Dependence of the largest likely value for R 
on the number N of equivalent molecules related by 

non-crystallographic symmetry 

R is defined in equation (7) of the text. 

N R 

1 0.00 
2 0.29 
3 0.34 
4 0-35 
5 0.38 

15 0.42 
co 0-43 

A second feature of (6) for incorrect solutions is that 
the probability distribution function for the calculated 
structure-factor amplitudes will differ from the ob- 
served amplitude distribution. The averaging operation 
in (6) implies that the calculated amplitudes will have 
both fewer weak and fewer strong reflections than the 
observed structure factors. The influence of incorrectly 
averaging a structure on the calculated structure 
factors is similar to the effect of twinning by merohedry 
on the intensity distribution (Rees, 1982). Random- 
walk methods used to obtain the intensity distribution 
function for the twinning problem are also applicable to 
the averaging problem. In the present case, however, it 
does not seem possible to obtain simple analytical 
solutions for the distribution functions, so that 
numerical calculations must be employed. 

This averaging effect may be demonstrated in a 
particularly clear fashion by the cumulative function 

N(z), which gives the probability that a particular 
normalized intensity is less than z (Howells, Phillips & 
Rogers, 1950). The intensity z is equal to the square of 
the structure-factor amplitude and the normalization 
procedure scales the z such that (z)  = 1. Fig. 1 
presents N(z) plots for squared amplitudes calculated 
from (6) for various values of N, where the unaveraged 
structure factors obey acentric Wilson statistics. The 
differences between the averaged and unaveraged 
distributions are quite pronounced, even for N = 2. For 
comparison, the size of this effect exceeds the dif- 
ference in N(z) for acentric and centric distributions. 
Since the N(z) test is routinely used to detect the 
presence of a center of symmetry in a crystal structure, 
the test should be sufficiently sensitive to detect errors 
in non-crystallographic symmetry averaging. 

In the preceding discussion, the effects of the 
molecular envelope and solvent regions on the cal- 
culated structure factors have been neglected. This 
omission should not seriously alter the theoretical 
expectations, however, since Crowther (1967) has 
demonstrated that the vanishing of density between 
subunits provides relatively little phasing information, 
except with low-resolution data, or unless the subunits 
occupy only a small fraction of the unit cell. Conse- 
quently, the non-crystallographic symmetry relation- 
ships which form the foundation of the present analysis 
should make the dominant contribution to the cal- 
culated structure factors. 

Model calculations 
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Fig. 1. Cumulative distribution function N(z) for various data sets. 
Curves designated 1 and 1 are the theoretical distributions for 
centric and acentric Wilson distributions. Curves 2, 3, 5, and 15 
are for acentric distributions averaged by the indicated factor. 
Data points II, &, $ are the N(z) distributions from the model 
calculations, cases 1, 2 and 3, respectively. 

Model calculations were performed to test the validity 
of the theoretical results. Random structure-factor 
amplitudes (obeying acentric Wilson statistics) and 
phases were generated to 6 A resolution for a P1 lattice 
with unit-cell dimensions a = b = c = 40 ~, ~ --- fl = ? = 
90 °. An overall temperature factor of 30A 2 was 
applied to the data. The non-crystallographic symmetry 
axis was parallel to the y axis, with fractional 
coordinates x --- 0.5, z = 0.5. The molecular envelope 
had cylindrical symmetry about this axis, with a radius 
of 0.3 for 0.1 < y < 0.5 and 0.5 for 0.5 < y < 1.0, 
49% of the unit-cell volume was contained within this 
envelope. 

The system of real-space averaging programs 
developed by Bricogne (1976) were used to 'refine' the 
phases of this random structure. Three cases were 
considered: (1) the structure was assumed to have no 
non-crystallographic symmetry (only the envelope was 
used for the refinement); (2) a threefold non-crystal- 
lographic symmetry axis was assumed; (3) a fivefold 
non-crystallographic symmetry axis was assumed. No 
evenfold axes were used, as this would generate an 
apparent center of symmetry in y projections. Five 
cycles of averaging were calculated for each case. 
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Table 2. Statistics of phase refinement for the three 
test calculations described in the text 

R is the crystallographic R factor between the original and final 
calculated structure-factor amplitudes; A~0 is the phase difference 
between the original and final phases. 

Case N R A~o (o) 

1 1 0.199 58.0 
2 3 0.370 68-1 
3 5 0.408 72.6 

Phases generated in one cycle were transferred to the 
'observed' structure-factor amplitudes in the Fourier- 
map calculation for the following cycle; no phase 
combination methods were employed. The refinement 
had essentially converged by this stage, since the R 
factor between structure factors calculated for cycles 4 
and 5 was less than 0.04, with phase differences of 

under 4.4 ° for each case. Statistics describing the 
refinement are presented in Table 2. A section of the 
initial Fourier map and the corresponding sections of 
maps phased using the 'refined' phases of the three test 
cases are illustrated in Fig. 2. 

In each test calculation, the final R factor is well 
below 0.586, and close to the values expected from the 
approximate theory presented above (for the N = 3 and 
5 cases). In addition, the N(z) distributions for the 
calculated structure factors deviate appreciably from 
the original distribution (Fig. 1). These effects are 
consistent with the theoretical arguments described 
earlier. Discrepancies between theory and test cal- 
culations are most probably due to neglect of the 
envelope in the theoretical analysis. 

Phase refinement by proper non-crystallographic 
symmetry averaging yields identical phases for struc- 
ture factors related by the non-crystallographic sym- 
metry operations. This effect exists independently of the 

original map 
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Fig. 2. y = 35/40 section of  original and 'refined' electron-density maps for test cases l, 2 and 3. The non-crystal lographic symmetry axis is 
at the center of  each section. The envelope boundary is indicated for the original map. Contour levels are at equal and arbi trary levels 
above zero, and are identical for all maps. 
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correctness of the non-crystallographic symmetry 
operators. When these operations are incorrect, this 
phase identity results in calculated structure factors 
whose amplitudes are the mean of the amplitudes of 
observed structure factors related by the non-crystal- 
lographic symmetry. As a direct consequence, the R 
factor between observed and calculated acentric struc- 
ture factors will be significantly below 0.586, the value 
which is characteristic of incorrect structures lacking 
non-crystallographic symmetry. Still lower values for R 
are anticipated during phase refinement of incorrect 
structures with the correct non-crystallographic sym- 
metry, since the observed structure-factor amplitudes in 
this case will automatically satisfy (6) for obtaining the 
calculated magnitudes, irrespective of the associated 
phases. Neglect of the envelope in this treatment will 
modify the quantitative details somewhat, but model 
calculations presented here suggest this effect will be 
small for N > 3. Consequently, low R values during 
phase refinement by non-crystallographic symmetry 
averaging do not necessarily imply correctness of 
resulting structures. 

This work was supported by a USPHS Biomedical 
Research Support Grant to UCLA, and a Dreyfus 
Foundation Starter Grant in Chemistry. 
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Abstract 

The average value of the residual R 2 and its spread 
or(RE) is described as a function of a threshold a, below 
which E 2 values are omitted from the data set. 
Theoretical expressions, valid for finite data sets in the 
space groups P1 and P[,  are derived for ( R E )  and 
O'2(R2) as functions of a for models containing atoms 
correctly as well as incorrectly positioned. Use of a 
threshold causes a decrease in the resolving power of 
R2-based strategies used in automated structure evalua- 
tions. Random elimination of E o values gives rise to a 
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larger loss of resolving power than does the elimination 
of small E o values. 

1. Introduction 

Automation in X-ray single-crystal analysis requires 
criteria discriminating correct from incorrect models of 
the structure. The residual function R 2, defined as 

R2 = • (EZo - 172E~)Z/Y E4o (1.1) 
H H 

may be used as such a criterion. E o represents the 
observed and E c the calculated magnitude of the 
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